Gerald Beresford Whitham. 13 December 1927 — 26 January 2014

A. A. Minzoni and N. F. Smyth

Supplementary data "Data Supplement"
http://rsbm.royalsocietypublishing.org/content/suppl/2015/06/02/rsbm.2014.0026.DC1

Email alerting service Receive free email alerts when new articles cite this article - sign up in the box at the top right-hand corner of the article or click here

To subscribe to _Biogr. Mems Fell. R. Soc._, go to:
http://rsbm.royalsocietypublishing.org/subscriptions
GERALD BERESFORD WHITHAM
13 December 1927 — 26 January 2014
Gerald Beresford Whitham was one of the leading applied mathematicians of the twentieth century. His original, deep and insightful research into nonlinear wave propagation formed the foundation of and mathematical techniques for much of the current research in this area. Indeed, many of these ideas and techniques have spread beyond wave propagation research into other areas, such as reaction–diffusion, and has influenced research in pure mathematics. His textbook *Linear and nonlinear waves*, published in 1974, is still the standard reference for the mathematics of wave motion. Whitham was also instrumental in building from scratch the Department of Applied Mathematics at the California Institute of Technology and, through choosing key people in new, promising research areas, in making it into one of the leading centres of applied mathematics in the world, with an influence far beyond its small size. During his academic career, Whitham received major awards and prizes for his research. He was elected a Fellow of the Royal Society in 1965 and a Fellow of the American Academy of Arts and Sciences in 1959, and was awarded the Norbert Wiener Prize for Applied Mathematics in 1980.

Gerald Beresford Whitham was born in Halifax, West Yorkshire, on 13 December 1927 and remained a proud Yorkshireman all his life. His family was poor. His father, Harry Whitham, also born in Halifax, was a Great War veteran who had difficulty in finding work after the war, eventually joining the Royal Air Force. His mother, Elizabeth Ellen Whitham (née Howarth), born in Elland, Yorkshire, worked long hours in local woollen mills to help support the family. Whitham had an elder brother, Denis Talbot Whitham, born on 16 September 1923, who served in the Royal Air Force in a VIP squadron during World War II and became a pilot for BOAC and then British Airways after the war. Whitham’s mother had obtained a scholarship to go to grammar school when she was a girl, but had had to leave school at primary level to
work to bring in money for her family. She regretted this for the rest of her life and made sure that her sons had the best educational opportunities possible. Whitham received his secondary education at Elland Grammar School, Elland, Yorkshire, from 1938 to 1945, with funding from a Country Minor Scholarship from the West Riding of Yorkshire. The headmaster of Elland Grammar recognized Whitham’s mathematical talent and gave him private lessons. Whitham entered the University of Manchester in 1945, funded by a County Major Scholarship from the West Riding of Yorkshire and a Brooksbank Exhibition scholarship from Elland Council. Whitham chose the University of Manchester because ‘local folklore’ said that it was a very good university. During his undergraduate studies, Whitham won the Dalton Mathematics Prize in 1946 and 1947. He received a first-class honours BSc in mathematics in 1948. Whitham later said that both Sydney Goldstein FRS, the Beyer Chair of Applied Mathematics at the university, who was a notable leader in fluid mechanics research, and M. J. (later Sir James) Lighthill (FRS 1953) were big influences on him and his research while he was at Manchester. The Department of Mathematics at the University of Manchester was then a leading centre of applied mathematics research in fluid mechanics. Also in the Department of Mathematics at the University of Manchester at this time was the famous number theorist Kurt Mahler, one of the many scientific exiles from Hitler’s Germany. Whitham used to tell the story dating from when he was an undergraduate student at the university. Students had to sign in at lectures by writing down their names on a sheet of paper. This was not taken seriously by the students, with Karl Gauss and other famous mathematicians apparently at the lectures, much to the consternation of Mahler, who was much too serious about mathematics to appreciate the humour.

Whitham then moved to postgraduate study, for which he was funded by a DSIR (Department of Scientific and Industrial Research) grant for research, starting with an MSc degree. Whitham had approached Lighthill about doing an MSc and PhD on general relativity. Lighthill told him that he did not work on general relativity, but that he did work on fluid dynamics. This encounter started Whitham’s long and distinguished career in wave theory. As an aside, after Whitham retired he intended to start research on general relativity, but as far as we are aware, this did not lead to any new work. The context of this interest in shock waves is that this was the period immediately after World War II when there was intense interest in supersonic flight and the behaviour of shock waves generated in supersonic fluid flow. The jet engine had been invented by Frank (later Sir Frank) Whittle (FRS 1947) in the UK and independently developed in that country and Germany during the war, leading to the first jet aircraft. The jet engine enabled the limitations of propeller-driven flight to be overcome, permitting supersonic flight. Lighthill later remarked (Lighthill 1967) in relation to Whitham:

I feel some pride at having, nineteen years ago, chosen as the problem to give to the first really good research student I had, the estimation of pressure pulses transmitted to great distances by bodies moving at supersonic speed.

This led to the award of an MSc thesis on ‘The behaviour of supersonic flow past a body of revolution’ in 1949 and a PhD degree for the thesis ‘Propagation of a spherical blast’ in 1953, both at the University of Manchester. The work for the PhD was completed in 1951, but the degree was awarded in 1953 as a result of Whitham’s being in the USA at the Institute for Mathematics and Mechanics in the intervening period. Whitham met his wife, Nancy Whitham (née Lord), while he was a PhD student at Manchester. Nancy was an undergraduate
Gerald Beresford Whitham

mathematics student and they first met when Whitham was her tutor for a mathematics course. She was born on 29 December 1929 in Oldham, Lancashire, the daughter of Frank Lord and Amy Lord (née Buckley). G. B. Whitham and Nancy Lord married on 1 September 1951 in Manchester (figure 1). They had three children: Ruth, Michael and Susan.

ACADEMIC CAREER

G. B. Whitham’s academic career spanned appointments in two countries, the UK and the USA, with visiting appointments in Australia, the UK and India. In 1950 Richard Courant, a student of David Hilbert ForMemRS, visited Manchester University. He had founded the Institute for Mathematics and Mechanics at New York University in 1946, renamed the Courant Institute of Mathematical Sciences in 1962. The now Courant Institute attracted many leading mathematicians forced out of Europe in the 1930s, including Kurt Otto Friedrichs and Fritz John. The needs of victory in World War II turned many of these pure mathematicians to applied mathematics research. This included major work on shock waves in compressible fluids, which was later published in book form as *Supersonic flow and shock waves* (Courant & Friedrichs 1976; originally published in 1948). This visit in 1950 by Richard Courant resulted in Whitham’s being invited to the Institute for Mathematics and Mechanics as a
research associate from 1951 to 1953. Whitham felt very welcome there, with Courant giving Nancy a job and making sure that they had enough money. In the European tradition, Courant, Friedrichs, Fritz John and J. J. Stoker showed the Whithams ‘tremendous kindness’ with family get-togethers. Although the leading people at the institute had an appreciation for applied mathematics, the majority were traditional pure mathematicians and Whitham’s first seminar ‘shocked them’ with its intuitive solution of the equations for sonic booms. Whitham also visited Princeton and during one visit attended a seminar by John von Neumann at which he politely told him that he had ‘missed a point’ in fluid dynamics, which stunned both the audience and von Neumann himself.

Whitham was asked to stay at the Institute for Mathematics and Mechanics, but after reflection he and Nancy wanted to return to the UK. Whitham felt that the emphasis at the Institute for Mathematics and Mechanics was too pure for his tastes. So Whitham moved back to Manchester University as a lecturer in applied mathematics, a position he held from 1953 to 1956. However, he then returned to the Institute for Mathematical Sciences, as the Institute for Mathematics and Mechanics had been renamed in 1953, as an associate professor in applied mathematics in 1956 because he was missing the atmosphere there; he remained until 1959. He considered that the USA offered a much higher standard of living, which was marked in those postwar years. Again, he felt that the Institute for Mathematical Sciences lacked people interested in applied mathematics based on physical reasoning, with too much emphasis on theorems, and his previous restlessness returned. Whitham was offered a full professorship at the Institute for Mathematical Sciences, but moved in 1959 to the Massachusetts Institute of Technology (MIT) as a professor of mathematics (figure 2). This move was helped by George Carrier and Sydney Goldstein at Harvard University and by C. C. Lin at MIT, Goldstein having moved to Harvard via the Technion in Israel. The professorial appointment at MIT has additional overtones given the traditional good-humoured rivalry between Caltech and MIT. Whitham remained on faculty at MIT until 1962.

Whitham found MIT to be very large after his experience at New York University, which he felt to be small and friendly. Whitham was thinking of returning to the Institute for Mathematical Sciences when, in the summer of 1960, Hans Liepmann of GALCIT (Graduate Aeronautical Laboratories of the California Institute of Technology), later its director, visited Harvard. GALCIT had been founded by Theodore von Karman (ForMemRS 1946) and was the leading centre for fluid mechanics and aeronautics, with many famous scientists and engineers at the time, such as Clark Millikan, H. Liepmann, L. Lees, P. A. Lagerstrom, J. D. Cole, D. E. Coles, F. E. Marble and A. Roshko. He suggested that Whitham visit GALCIT, with a possibility of this leading to an appointment. Whitham duly came to the California Institute of Technology (Caltech) as a visiting professor of applied mechanics from 1961 to 1962. Whitham enjoyed Caltech immensely because it had a similar style and small size to Courant’s, but had a large number of people with similar interests in physical applied mathematics and fluid mechanics. His previous negative image of California as ‘Tinseltown’ and ‘swimming pools’ quickly disappeared.

The major legacy of Whitham’s scientific vision and leadership is the Department of Applied Mathematics at the California Institute of Technology, now the Applied and Computational Mathematics option within the Department of Computing and Mathematical Sciences. The Department of Applied Mathematics at the California Institute of Technology became so much associated with Whitham that it was known in applied mathematics circles as ‘Whitham’s department’. Whitham moved to Caltech permanently in 1962 and
Gerald Beresford Whitham was a professor of aeronautics and mathematics from 1962 to 1967. At the time, there was an influential group of applied mathematicians in the Department of Aeronautics, now the Department of Aerospace, working on asymptotic methods as applied to fluid mechanics problems, including Paco A. Lagerstrom, Julian D. Cole and Saul Kaplun, but no coherent group working on applied mathematics in a broad sense. In 1967 Whitham was instrumental in setting up a separate Department of Applied Mathematics down the corridor from the Department of Aeronautics. He served as chairman of the Committee on Applied Mathematics from 1962 to 1971 and then the executive officer (head) of department from 1971 to 1980. This department included Lagerstrom and Cole, Kaplun having passed away in 1964. He recruited an outstanding group of applied mathematicians working in a wide variety of areas for this new department. These included Philip G. Saffman (FRS 1988) in 1964, Donald S. Cohen in 1965, Herb B. Keller in 1967, Heinz-Otto Kreiss in 1978 and Bengt Fornberg in 1974. This formed a small but highly influential group that became one of the leading centres of applied mathematics in the world. The later appointment of Fornberg, Keller and Kreiss shows an early recognition of the importance that numerical analysis was to play in applied mathematics. Whitham was a professor of applied mathematics...
In the process of building the Department of Applied Mathematics at the California Institute of Technology, Whitham combined two ingredients. The first was his realization, through his work on shock waves, that the understanding of nonlinear problems and nonlinear equations needed new ideas. At the time he started the department, bifurcation theory and nonlinear analysis were just starting to contribute to the study of nonlinear problems, with potential applications in a diverse range of fields, including fluid mechanics, chemical reactions and oscillator problems. Whitham realized the importance of these new fields, not directly through his own research but by building a group of applied mathematicians who knew these new areas and who were also knowledgeable about the underlying science of potential application fields and so could work successfully on applications with other scientists and engineers. The work of Cohen, Keller and Saffman on bifurcation theory led to both new mathematical ideas and new applications in a diverse range of scientific and engineering fields. Moreover, the now widely used and standard numerical idea of continuation originated through this group at this time.

The second ingredient was the realization that numerical solutions of equations could help to stimulate new understanding that went beyond the actual accurate solution itself. One result of this insight was the now classic paper on nonlinear dispersive phenomena (16)*, which numerically studied a range of important problems in the area, particularly those for solitary waves.

* Numbers in this form refer to the bibliography at the end of the text.
wave equations, and which gave the first proper study of undular bores. In general, the work of Fornberg and Kreiss on hyperbolic and dispersive waves originated much of the current understanding of the numerical solution of multi-scale problems and coherent structures. As is well known, there is no Nobel Prize in Mathematics, the reasons for which are the subject of many humorous tales. However, Whitham did like to say that the Department of Applied Mathematics at Caltech did have one Nobel Prize, that of Robert C. Merton, who won the Nobel Prize in Economic Sciences in 1997. Merton obtained an MSc in applied mathematics from Caltech in 1967, but switched to a PhD in economics at MIT. In his role as head of department, Whitham helped Merton make the transition from applied mathematics to economics.

Whitham enjoyed travelling and had visiting appointments at several universities. He was highly valued in this role, both for his stature in applied mathematics and for his well-deserved reputation as a lecturer who could give outstanding courses on a wide variety of subjects, including his speciality of nonlinear waves. Whitham had a particular regard for Australia, a regard that was shared with his wife, Nancy. He was a visiting professor at the Department of Mathematics at the University of Queensland from July to October 1980, where, incidentally, one of us (N.F.S.) first met him as an undergraduate student. Whitham also knew Professor Ted Buchwald of the Department of Applied Mathematics at the University of New South Wales, located in Sydney, from his days at the University of Manchester. Professor Buchwald arranged for him to be a visiting professor at the university from July to August 1984 and January to April 1989. Whitham returned to the UK as a visiting scholar at the University of Oxford from April to June 1981. Whitham also visited the Tata Institute of Fundamental Research at the Indian Institute of Science, Bangalore, from January to March 1978 and November to December 1980. As part of this visit he delivered a course on wave motion, which was published as Lectures on wave propagation (17). During his times in Australia and India, Whitham and his family travelled extensively around both countries. Whitham documented all the family travels with a vast collection of colour slides, spanning 1960–98. He would often say while photographing some landmark, ‘Stand over there for scale.’ He meticulously catalogued and described all the slides in a journal that has become a family treasure.

An interesting story relates to one of Professor and Mrs Whitham’s visits to Australia when they took a driving holiday around Tasmania. They were driving in a wilderness area on the western side of Tasmania when they saw an animal they did not recognize cross the road. At the next township they asked a woman what it was. She said that they should not have seen such an animal as it was a Tasmanian tiger (or Tasmanian wolf) and they are extinct! There have been many alleged sightings of the Tasmanian wolf. What distinguishes this one is that neither Professor nor Mrs Whitham knew that such an animal existed before they saw it in Tasmania that day.

Scientific Honours

G. B. Whitham’s outstanding research in and influence on applied mathematics was recognized with awards from several bodies in both the UK and the USA. The peak honour was being elected a Fellow of the Royal Society on 18 March 1965. Whitham was elected a Fellow of the American Academy of Arts and Sciences in 1959, just three years after he arrived in the
USA. In 1980 Whitham was awarded the Wiener Prize in Applied Mathematics, one of the major international awards in applied mathematics. The description of the Wiener Prize states that it is awarded

for an outstanding contribution to ‘applied mathematics in the highest and broadest sense.’ Awarded jointly by the American Mathematical Society and the Society for Industrial and Applied Mathematics. This prize was established in 1967 in honour of Professor Norbert Wiener and was endowed by a fund from the Department of Mathematics of the Massachusetts Institute of Technology.

Finally, Whitham was on the Oceanography Panel of the President’s Scientific Advisory Council from 1965 to 1966.

AREAS OF RESEARCH

The applied mathematics research of G. B. Whitham in wave motion falls into the two general areas: waves governed by hyperbolic equations and waves governed by dispersive equations. This is also the general division of material in his classic text *Linear and nonlinear waves* (15), itself based on his long-running course at the California Institute of Technology, AMa152, ‘Linear and nonlinear waves’. *Linear and nonlinear waves* is still the standard reference in the area and has not been surpassed in the 40 years since its publication. Reading and re-reading sections of the book is still a rewarding task, yielding new insights. In general, the first part of Whitham’s career up until the 1960s was devoted to hyperbolic waves, initiated by his study of shock waves in supersonic flow, and the latter part of his career was devoted to dispersive waves, as exemplified by water waves.

Hyperbolic waves

Whitham’s early work on shock waves led to a deep understanding of the formation and propagation of such waves. This understanding led to an appreciation of the ubiquitous nature of shock waves in physical systems and the applications of shock-wave theory outside gas dynamics. In two classic papers (4, 5) Whitham and Lighthill showed how shock waves arise in the evolution of the water flow of a flood and in the dynamics of traffic flow, with both these phenomena being governed by systems of nonlinear hyperbolic conservation laws. The first application to flood waves is clearer because the shallow-water equations form the same system of hyperbolic equations as the gas equations, with the ‘ratio of specific heats’ being 2. The application of hyperbolic conservation laws and shock waves to the everyday experience of traffic flow is not obvious.

At the time, the mid 1950s, there was no quantitative theory for the flow of traffic on roads. Because cars are discrete objects, continuum models for their bulk movement would seem to be inappropriate. It is to be credited to Lighthill and Whitham (5) and Richards (1956) that they pursued the idea of modelling the behaviour of individual cars on a single-lane highway with the use of conservation laws based on the density of cars, which is valid when this density is not small. The central idea was the realization that the flow of cars depends in a nonlinear fashion on this density, with the flow being zero at the maximum density; that is, stopped bumper-to-bumper traffic. This central idea was later verified by actual observations of traffic. It should be noted that Lighthill and Whitham modelled the flow—that is, the flux—of traffic in terms of measurable parameters, such as average car length, drivers’ reaction time
and average car velocity. This modelling resulted in the first quantitative understanding of traffic behaviour, enabling quantitative predictions that could be used to design roads, traffic lights and traffic regulations, all these having important consequences for everyday life. One of the main predictions made by Whitham’s theory was the propagation of traffic jams as shock waves, with estimates of the speeds of the shock waves. This provided the proof of the nonlinear nature of traffic behaviour. The importance of this work was rapidly recognized in the engineering and design fields. The influence of Whitham’s work on traffic flow is detailed in a report edited by Gerlough & Capelle (1964) and by the fact that nearly all papers in the book 75 years of the fundamental diagram for traffic flow theory (Transportation Research Board of the National Academies 2011) cite Whitham’s work. It should also be noted that current work on traffic flow theory relies on Whitham’s understanding of the subject as a basis for the formulation of traffic control (Transportation Research Board of the National Academies 2011). Moreover, recent computer models based on particle-type interactions and descriptions are tested by reducing them in the continuum limit to Whitham’s equations. Whitham’s traffic flow work has become a standard reference, with more than 3000 citations by the Institute for Scientific Information.

Whitham’s work on traffic flow shows how a problem of great complexity can be understood in terms of measurable macroscopic quantities in such a way that the essential physical behaviour is captured. This in turn leads to exploration and prediction, paving the way for a better understanding of a problem of importance to wider society. Because traffic flow and traffic jams are a familiar everyday occurrence, the analysis of traffic flow in Whitham’s long running course AMa152, ‘Linear and nonlinear waves’, generated much interest—so much so, that some Caltech students went to freeways in Los Angeles and measured traffic flow to verify the theory themselves.

Although extensive theory existed for the propagation of steady shock waves with uniform fronts (Courant & Friedrichs 1976), the description of non-steady shocks, especially those with curved fronts, presented a major challenge. To model such evolving shock waves mathematically, Whitham developed an approximate theory termed geometrical shock dynamics (7, 8). Developed in the context of supersonic gas flow, geometrical shock dynamics has nevertheless had a subsequent widespread influence on the study of nonlinear diffusion. The main idea of shock dynamics is to relate the deformation of a non-planar shock wave during its propagation to the local velocity of the local shock normal. The dynamics of the shock is then expressed as a functional of the local geometry. This was achieved by Whitham (7, 8) by solving approximately for the propagation of a one-dimensional shock in a tube of varying cross section. This in itself is a complicated problem when an approximate solution beyond the small-amplitude, Mach number near 1, limit is sought. Whitham obtained a remarkable approximation by a clever analysis that combined the flow at the back of the shock and its influence on the local shock velocity, leading to an analytic approximation for the local shock velocity in terms of the local area of the tube. This demonstrated for the first time the possibility of relating a relevant physical quantity of a propagating front to its actual geometry. The resulting system for the propagating shock front was found to be a hyperbolic system when expressed in terms of the Mach number and the angle of the normal to the shock front. This hyperbolicity has two important consequences. The first is that it shows linear stability for shock waves. The second is the existence of nonlinear instabilities that lead to discontinuities in the shock normal and Mach number along the shock. These were successfully interpreted as Mach triple points.
In addition to regular reflection consisting of incident and reflected shocks, similar to the reflection of light, shocks have another type of reflection called Mach reflection. In this case, as well as the incident and reflected shocks, there is a third shock called a Mach stem to which the incident and reflected shocks are joined, the entire configuration having a Y shape, with the Mach stem being the bottom of the Y. The point where the three shocks join is called the Mach triple point. Later detailed experiments on shock diffraction were successfully interpreted in terms of geometrical shock dynamics, which so far remains the only analytical theory capable of describing this process. Geometrical shock dynamics was developed before the availability of suitable numerical algorithms to capture shocks, and computers powerful enough to implement them. However, even when both of these became available, geometrical shock dynamics continued to be useful and to be further developed. The literature is extensive, but examples can be found in the work of Whitham and students (19), Henshaw et al. (1986) and Schwendeman (1988, 1993) and other authors (Best 1993; Besset & Blanc 1994; Cates & Sturtevant 1997; Goodman & MacFadyen 2008; Anand 2013).

The closure of the propagating front approximation meant that the dynamical problem could be formulated in geometrical terms. The relevance of this approach for shocks has been described above. It was later realized that the same ideas could be applied to other problems involving propagating fronts (García et al. 2001). Such propagating front problems occupy a substantial literature in reaction–diffusion equation theory (Kopell & Howard 1973). For these reaction–diffusion equations, the problem is to find an equation that relates the propagation of the front normal to a local geometrical property of the front. The analysis assumes, as for shock propagation, that a one-dimensional front is stable to local perturbations. A system of local coordinates at the front is then introduced to study the local behaviour of the lateral diffusion. It is shown that the local propagation speed is a linear function of the local curvature. As in shock dynamics, the dynamical process is transformed to a purely geometrical one. In particular, this formulation allows an understanding in simple geometrical terms of threshold behaviour, blocking by geometry and diffraction due to walls for two-dimensional diffusion fronts (Kopell & Howard 1981). This geometrical approach is a very useful first approximation for the interpretation of numerical results of the full system, which, because of the inclusion of all effects, can be difficult to interpret. We believe that the geometrical front propagation ideas of Whitham can be very useful in providing a fundamental understanding of these processes.

The shock dynamics just described proved to be very accurate for strong shocks for which the local nature of the flow allows a geometrical description. However, a different understanding was needed for a large class of problems in weakly supersonic flow. Before Whitham’s work on the subject it was not possible to assess the effect of geometry on weak shocks and their propagation. Again, Whitham found a key idea that identified the essential features of the problem and provided a method of calculating results in accord with experimental results. This theory is termed nonlinearization of the acoustic solution (1–3, 6), also discovered independently by Landau (1945). Whitham realized that the geometry of the weak shock wave was described by the linear acoustic solution. This wave geometry was then used to obtain phases that gave the distortion of the linear rays due to the nonlinear effects, which were estimated from the linear geometry. With these ideas, the shock fitting problem became tractable because the waves ahead of and behind the shock were known. It was then possible to find complete solutions for realistic flows long before numerical solutions became
available. Indeed, aircraft manufacturers of the time found that Whitham’s theory gave good results, but, more importantly, gave valuable insight into complicated flows for which nonlinearity and geometry interacted strongly.

Dispersive waves

Whitham’s greatest legacy in dispersive wave theory is the development of the technique of averaged Lagrangians to study slowly varying linear and nonlinear wavetrains (9, 10, 12, 13, 15). This theory, termed modulation theory, assumes that the parameters of a dispersive wavetrain, such as its amplitude, wavenumber, frequency and mean height, are slowly varying functions of space and time. The fast phase oscillation of the wavetrain can then be mathematically decoupled from its slowly varying envelope, resulting in partial differential equations for the slowly varying parameters in slow space and time variables. This averaged Lagrangian technique is related to multiple-scales perturbation theory (14). The key advance of modulation theory is the use of a Lagrangian formulation of the equations, which is averaged by integrating over a wave period in the ‘fast’ phase variable, leaving an averaged Lagrangian in the slow space and time variables. This Lagrangian formulation bypasses many of the difficulties of multiple-scales perturbation theory used in its standard ‘two timing’ form (Kevorkian & Cole 1981). The partial differential equations describing the slowly varying wavetrain parameters are then found as variational equations from the averaged Lagrangian.

One of the key motivations behind the development of modulation theory was the extension of the linear concept of group velocity to nonlinear wave systems (9, 11, 18). It was then expected that the modulation equations would form a hyperbolic system of partial differential equations, with the characteristic velocities being the nonlinear group velocities (18). However, it was found for many physical equations governing nonlinear waves that the modulation equations formed an elliptic system, for instance those for surface gravity waves on a fluid (12, 15). This puzzled Whitham, because he expected hyperbolic modulation equations corresponding to real nonlinear group velocities, until he heard of experiments by T. Brooke Benjamin FRS in which he had trouble generating the Stokes surface wave on a fluid (water) and suspected that the Stokes wave was unstable (Zakharov & Ostrovsky (2009), as related by Professor Alan Newell). ‘The penny then dropped’, and Whitham made the connection between stability and the type of the modulation equations (Zakharov & Ostrovsky (2009), as related by Professor Alan Newell), showing how this resulted from a linear stability analysis (12, 15). The connection was then made between the classification of the modulation system and the stability of the underlying wavetrain, with hyperbolic modulation equations corresponding to stable wavetrains and elliptic equations corresponding to unstable ones (12, 15). This key realization meant that modulation theory was an elegant method by which to determine the stability of nonlinear waves. The Benjamin–Feir sideband instability of surface gravity waves (Benjamin 1967; Benjamin & Feir 1967) could then be derived simply (12).

The technique of modulation theory, or averaged Lagrangians, introduced by Whitham made possible the full nonlinear analysis of slow modulations of wavetrains. As stated above, the modulation equations form a system of partial differential equations for the slowly varying wave parameters. When the modulation equations form a hyperbolic system, the modulations travel along the characteristics, with the characteristic velocities being the nonlinear counterparts of the linear group velocity. When the modulation equations form an elliptic system, the modulations grow, and higher-order nonlinearity and dispersion will determine the long-term behaviour of the modulated wavetrain. These results show that the instability mechanism is
potentially present in all systems, at least those with a Lagrangian formulation, and is caused by the spatio-temporal exchange of wave action between the modulated wave parameters. At the same time, this instability mechanism was found by Zakharov (1967) via a Hamiltonian formulation for weakly nonlinear waves through the Fourier modes of the linear problem. In the weakly nonlinear regime, the results of Whitham reduce to those of Zakharov (1967). Finally, this instability mechanism was studied experimentally by Benjamin & Feir (1967) and compared with the sideband formulation of the Whitham modulation equations (12, 15). Agreement was found, confirming the physical relevance of the modulation equations. This Whitham–Zakharov–Benjamin–Feir instability became known as modulational instability, which can be present in nonlinear, dispersive physical systems. On learning of Whitham’s work on modulation theory, Lighthill (1965) developed it for general weakly nonlinear waves and so derived an explicit criterion for modulational instability. An account of this early work on modulation theory and modulational instability can be found in the review paper of Zakharov & Ostrovsky (2009).

The most far-reaching application of modulation theory was the derivation of the modulation equations for the Korteweg–de Vries equation (10, 15), the generic nonlinear wave equation having an exact solution via the inverse scattering method. These modulation equations were derived by using a tour-de-force of manipulation of a basic integral and its derivatives. The actual integral was an integral over a period of the underlying cnoidal wavetrain, the integrand itself arising from a cubic polynomial resulting from the differential equation giving the cnoidal wave solution of the Korteweg–de Vries equation. Because this loop integral could be expressed in terms of elliptic integrals, this algebraic manipulation was implicitly based on the properties of elliptic integrals and elliptic functions (Whittaker & Watson 1980). The modulation equations for the Korteweg–de Vries equation were found to be hyperbolic, so that cnoidal waves are modulationally stable. The remarkable finding was that the Riemann invariants for these hyperbolic modulation equations were expressed in terms of the roots of the governing cubic polynomial. This derivation of the modulation equations for a single-phase cnoidal wave for the Korteweg–de Vries equation was subsequently extended to multiphase wavetrains by Ablowitz & Benney (1970), using multiple-scales perturbation theory (see Dobrokhotov & Maslov (1982) for a review of this multiple-scales theory). Indeed, this multiphase extension directly follows Whitham’s ideas on multiphase extensions of his original single-phase work (10), displaying the depth of his original insight. The simplicity of the modulation equations for the Korteweg–de Vries equation was unexpected and hinted at a deeper explanation from the inverse scattering solution of the Korteweg–de Vries equation. This deeper explanation was found by Flaschka et al. (1980), using deep results from mathematical analysis, specifically the finite-gap theory of Novikov (1974) and Lax (1975). These more powerful techniques also enabled modulation equations for multiphase wavetrains to be found. Following on from this work, the multiphase modulation equations for other nonlinear wave equations with inverse scattering solutions have been derived (Pavlov 1987; Krichever 1988). In addition, modulation theory could also then be developed for nonlinear wave equations which are a small perturbation of integrable equations (Forest & McLaughlin 1984; Kamchatnov 2004).

The other key finding from the modulation equations for the Korteweg–de Vries equation was a result that Whitham was aware of but did not publish because he was not sure that it was valid from a theory based on a slowly varying wavetrain. The modulation equations for the Korteweg–de Vries equation are hyperbolic and so possess a centred, simple wave
solution. Given his previous work on hyperbolic equations, Whitham was well aware of this but did not think that such a solution would be valid, because it corresponded to a jump initial condition, which is not slowly varying. This centred simple wave solution was subsequently derived by Gurevich & Pitaevskii (1974) and was found to correspond to what is termed an undular bore in water wave theory, also termed a dispersive shock and a collisionless shock in plasma physics. When this work appeared, Whitham regretted not publishing it himself. He then collaborated with Bengt Fornberg and published a classic paper (16), which numerically examined many problems in nonlinear wave theory. One of these was the undular bore solution of the Korteweg–de Vries equation and it was shown that the modulation theory solution for it was in excellent agreement with numerical solutions, once the bore was established. The reason that a slowly varying theory gives good solutions for a jump initial condition is that the slowly varying structure of the bore establishes itself rapidly after an initial start-up transient. The undular bore solution of the modulation equations of the Korteweg–de Vries equation was subsequently justified from the small dispersion limit of the Korteweg–de Vries equation, which corresponds to Bohr–Sommerfeld semi-classical quantum mechanics (Lax & Levermore 1979). Subsequent to this work on the Korteweg–de Vries equation, modulation theory has diverged into two strands: the derivation and use of simple wave solutions and the more pure mathematical analysis of modulation equations.

The use of modulation theory in physical applications, in particular undular bore solutions, was started by the use of modulation theory for the Korteweg–de Vries equation to analyse the resonant flow of a fluid over topography (Grimshaw & Smyth 1985; Smyth 1987). The multiphase modulation equations for the Korteweg–de Vries equation (Flaschka et al. 1980) are more involved than those for a single-phase wavetrain. It was then found that modulation theory could be used to find solutions of initial-boundary value problems for the Korteweg–de Vries equation, for which there is no inverse scattering solution (Marchant & Smyth 1991, 2002). Once the connection between modulation equations and inverse scattering had been found, the way was then open for deriving the modulation equations for other nonlinear wave equations that possessed an inverse scattering solution, such as the nonlinear Schrödinger equation, the Sine–Gordon equation and the Benjamin–Ono equation. These modulation equations were then used to study a wide variety of physical problems in a wide range of scientific fields, for example nonlinear optics based on the nonlinear Schrödinger equation (Kodama 1999), Bose–Einstein condensates based again on the nonlinear Schrödinger equation (Kamchatnov et al. 2004; Hoefer et al. 2006; El et al. 2009), geophysics based on the Sine–Gordon equation (Gershenzon et al. 2009), oceanography based on the Korteweg–de Vries equation (Smyth & Holloway 1988) and meteorology based on the Benjamin–Ono equation (Porter & Smyth 2002). This wide range of scientific applications shows the utility and depth of modulation theory.

The next key advance of modulation theory came from the discovery that to obtain undular bore solutions, the full modulation equations were not needed (El et al. 2003; El 2005). For undular bore solutions, all that was needed were the leading and trailing characteristics of the bore, which could be obtained from the reduced modulation equations for the solitary wave and linear periodic wave solutions, respectively. These reduced modulation equations are available for a large class of nonlinear dispersive wave equations. Because the derivation of tractable modulation equations had previously been essentially limited to equations for which there is an inverse scattering solution, for which it is known that there must be simple modulation equations given by the roots of an underlying polynomial, this opened up the use
of modulation theory to a wide variety of non-integrable nonlinear wave equations arising in a wide variety of fields. As with integrable nonlinear wave equations, modulation theory was then applied to a wide range of scientific fields, including water waves (El et al. 2006; Esler & Pearce 2011), nonlinear optics (El et al. 2007; Crosta et al. 2012), Fermi gases (Lowman & Hoefer 2013a) and geophysics (Lowman & Hoefer 2013b).

Whitham stated in his book *Linear and nonlinear waves* (15) that it would be ‘extremely valuable to have experimental evidence of this separation, since it is of fundamental importance in assessing the modulation theory’ when referring to the multiple nonlinear group velocities that occur for modulationally stable nonlinear wavetrains. As far as we are aware, this experimental verification has not been found directly, but it has been found indirectly through comparisons of the predictions of modulation theory, especially the undular bore solution, with experimental and observational results. The first experimental verification of modulation theory was achieved in experiments by Tran et al. (1977) on undular bores in a plasma, governed by the Korteweg–de Vries equation. This work found excellent agreement for the amplitude of the lead soliton of the bore. The lead wave has the largest amplitude and is then relatively less affected by loss and other mechanisms neglected in the Korteweg–de Vries approximation. A similar comparison of the amplitude of the lead wave of a bore generated by coherent light in a nonlinear crystal, governed by the nonlinear Schrödinger equation, was made by Wan et al. (2006), again giving excellent agreement between modulation theory and experimental results. Good agreement of modulation theory with oceanographic data was obtained by Smyth & Holloway (1988) and with meteorological data by Porter & Smyth (2002). This quantitative comparison of modulation theory and experimental and observational results confirms the soundness of modulation theory and the importance of Whitham’s original insights.

At the same time as modulation theory was being developed and used in applied mathematics, it was also taking a parallel path in pure mathematics. This was due to the connection found by Flaschka et al. (1980) between modulation equations and loop integrals around branch cuts in the complex plane. In pure mathematics, Whitham modulation equations are then associated with the moduli dynamics of Riemann surfaces. This connection then branched out into work on topological field theories, Frobenius manifolds, renormalization groups, coupling constants and Seiberg–Witten theory, Seiberg–Witten equations, singularity theory, isomonodromy deformations, quantum cohomology and theory, Gromov–Witten invariants and Witten–Dijkgraaf–Verlinde equations (*Encyclopaedia of mathematics* 2002). The connection between the stability of a periodic wavetrain and the elliptic or hyperbolic nature of the modulation equations for it has been rigorously proved (Barker et al. 2010; Johnson & Zumbrun 2010; Johnson et al. 2010). A few of the more important contributions of Whitham modulation theory to pure mathematics can be listed. Whitham modulation theory, or, more precisely, the structure of the modulation equations for the Korteweg–de Vries equation, was crucial in the construction of a general theory of integrable systems of hydrodynamic type (Tsarev 1985; Dubrovin & Novikov 1989). There has also been rigorous work on the Hamiltonian formalism of the Whitham modulation equations (Maltsev 2010, 2013), following on from the basic theory developed by Whitham (15). It has even found application in topological field theories (Dubrovin 1992; Krichever 1994).

An important discovery for systems of nonlinear diffusion equations was the existence of spiral wave solutions (Cohen et al. 1978). These waves rotate around a centre and have spiral arms that are related to a phase singularity. There are families of such solutions dependent on
the amplitude and a wavenumber that is characteristic of the dominant instability producing these waves. In this context, a modulation theory based on Whitham modulation theory was developed (Hagan 1982). This formulation clarified the basic mechanisms involved in the evolution of spiral waves under slowly varying conditions. Modulation theory produces a criterion that enables an understanding of the local shape of target patterns. In detail, one of the consequences of modulation theory is the formation of solutions with multivalued wavenumber. This is obviously not physical, but it leads to the conclusion that two spiral waves form. It was later demonstrated that this conclusion is correct (Kopell & Howard 1981) and a shock structure in wavenumber gives the transition between the two modulation solutions.

It is seen that the ideas put forward by Whitham in one context have had far-reaching consequences in other areas, providing still another example of the insight and ability of Whitham to grasp the essential parts of complicated problems. The need to identify physical mechanisms that could be represented in terms of mathematical ideas that then could be used to make predictions was always present in Whitham’s work. At this stage, we recall several instances that had important impacts on our professional development.

As a first example comes the realization that nonlinearity and dispersion in waves can be treated, to a certain extent, with independent descriptions, provided that appropriate conservation equations are preserved in the process. This thought process led to Whitham’s remarkable model for water-wave peaking and breaking (12, 15, 16). This model combines full linear dispersion with a Korteweg–de Vries nonlinearity and gives a remarkable description of the role of deep water-wave dispersion in relation to water-wave peaking and breaking. This work and the results of this type of modelling have stimulated mathematical work on the Hamiltonian recursive approximation to the water-wave equations in terms of Boussinesq–Whitham-type equations (Aceves-Sanchez et al. 2013).

The ideas of Whitham, because of their depth and novelty, have been found to be valuable in many fields, and we do not yet know how their ramifications will affect our thinking in the future. A current example of their influence is the study of strongly nonlinear mechanical systems with the use of modulation theory ideas. The need to find solutions of the Whitham equations is stimulating new developments in strongly nonlinear asymptotics.

Teaching and Mentoring of Junior Colleagues

Those of us who had the privilege of attending classes given by G. B. Whitham retain a very vivid memory of what we learnt by listening to the lectures and later doing the carefully selected problems that were given. In class, the ideas were introduced by simple versions of complicated problems for which the main points were presented in a broad picture accompanied by details that never obscured the main stream. Whitham used to say many times in class that ‘you have to keep thy thinking straight.’ Later, one realized that what seemed simple owing to Whitham’s explanation was the outcome of a great deal of work. The emphasis in class was always on the ideas that made the solution possible. Very often, this was highlighted by explaining the results from different perspectives. In the end, one obtained a first-hand exposure to when and to what extent a scientific problem had been solved. This was one of the most valuable teachings one could receive when seeking to pursue studies in applied mathematics.

In his courses Whitham’s presentation was very original, which allowed the coverage of a great deal of material necessary to obtain an understanding of the subject matter, accompanied
by a working knowledge of the subject. For instance, the course in stochastic processes was a wonderful example of this, during which many of the important results for a range of different processes were explained using a combination of differential equations and asymptotic analysis. This combination made it possible for students, after only one year of class, to study works on Brownian motion, filtering of signals, mean exit times, and so on. The results were no longer perceived as specialized, but rather as an integral part of the process of generating a mathematical way of predicting natural behaviour.

Whitham’s course on the calculus of variations made students aware of the possibility of thinking in a consistent way about problems with many degrees of freedom by taking advantage of their variational formulations, with emphasis on the different ways of approximating solutions via the variational setting. This course linked with, and was an outshoot of, Whitham’s research on modulation theory. The correct formulation of boundary conditions, especially for free boundaries, and their approximation proved to be accessible to the class. The ideas of constrained problems and optimal control were made accessible via several carefully chosen non-trivial examples that illustrated the convenience of thinking via variational formulations. The students became familiar with the material and gained confidence in a powerful idea for explaining and analysing complicated problems.

Whitham was dedicated to the education and development of his PhD students as well. His wide-ranging knowledge meant that he could suggest problems at the forefront of developments. He was patient with his students, particularly when they were starting their research and knew little, sharing his insight and guiding them to become fully fledged researchers in their own right. Whitham had 15 PhD students in total, many of whom went on to establish academic careers and produce research that has led to new developments in wave theory and fluid mechanics. However, Whitham had little time for self-promoters who used bluff rather than scientific excellence to advance. A good example of this is his interaction with a beginning postdoctoral fellow. Whitham invited this young scientist into his office to talk about his research. This young scientist then proceeded to tell Whitham that the research he did was out of date and that he should change to this postdoctoral fellow’s research field. That young scientist did not remain much longer in the Department of Applied Mathematics.

Finally, we remember some of the experience we gained from the advice of and conversations with Whitham while working on problems of mutual interest after we graduated and began our professional lives. The choice of problem was always a very important part of the process. Sometimes Whitham would suggest a broad area of problems that had not been explored. The advice was invariably to concentrate on something for which it was not clear how to proceed. Many times, Whitham’s advice was to look for the nonlinear counterparts of relevant linear effects. On other occasions, he would listen carefully to the problems one found while reading the literature and then point out alternative solutions to these problems that he had derived previously and which he kept in his office drawers. Or one would be pleased to find the solution for a new problem, but on discussing it with Whitham find that he had already done it, with him again pulling out a folder with a neat, carefully detailed solution that, indeed, went far beyond what one had done. Whitham was very selective on what to publish and what was worth publishing. Unfortunately, the wheel has turned and these are not considered virtues now. Whitham had an impressive sense of proportion to put results in their proper context. He was always concerned about the correctness and relevance of the results for understanding the problem at hand. Usually he pointed out an idea that simplified matters considerably, and he was never satisfied until a full understanding was obtained.
Whitham’s sense of humour while appraising an incomplete or unclear argument was expressed in his phrase ‘this is clutching at straws’. Such words conveyed the urgency of clarifying the matter. The advice that Whitham gave about the possibilities of new ideas that became fashionable at some point of time was always based on a very detached perspective on the actual possibilities of these new ideas with regard to the solution or clarification of actual, physical problems. This perspective was most valuable for junior people, preventing them from becoming stagnant. Whitham had a sly sense of humour, which came through during his lectures. An example of this humour is a story related by Dr Pat Hagan, a student of Professor Cohen. Whitham was lecturing the introductory graduate applied mathematics course AMa101, ‘Methods of applied mathematics’. During one lecture he presented an example of integrating in the complex plane, ‘a problem that made grown men weep’, as Pat stated. With a twinkle in his eye, he put down the chalk, turned to the audience and said ‘It’s not so bad if you keep a cool head’, and proceeded to pick his way through the problem. This anecdote also displays Whitham’s ability to make extremely difficult material flow and seem clear—that is, until you actually tried to tackle these problems yourself. Whitham always saw teaching and research as two sides of the process of understanding that complemented each other. By example he showed how the process of discovery could be shared with the younger generation and how, by this, new questions that generate new ideas arise.

Final thoughts from the family

Gerald Whitham, our father, moved in 2006 from Southern California to Portland, Oregon (figure 4), with our mother Nancy Whitham, to be closer to family as his health failed. Gerald and Nancy were married for 58 years, until Nancy’s death in 2009. Nancy’s undergraduate degree in mathematics made her the only immediate family member to fully understand the work that he did, including proof-reading his book *Linear and nonlinear waves*. Gerald is survived by his
daughters Ruth and Susan, his son Michael, and four grandsons. We miss his sense of humor, his stubborn independence, and the practical life advice that he dispensed to all of us. We appreciate the efforts that Noel Smyth and Tim Minzoni have put into writing our father’s memoir, as the mentoring of graduate students appears to us to have been one of the most satisfying aspects of his long career.

ACKNOWLEDGEMENTS

We thank Gennady El and Luke Sciberras for commenting on sections of this memoir. We also thank Ruth, Michael and Susan Whitham for providing photographs of and personal details on G. B. Whitham and extensive comments on drafts of this memoir. We also acknowledge the use of the extensive notes on his life and career that Whitham wrote before his passing.

The frontispiece photograph was taken at Caltech in 1971 and is reproduced courtesy of the Archives, California Institute of Technology.

REFERENCES TO OTHER AUTHORS

Biographical Memoirs

BIBLIOGRAPHY

The following publications are those referred to directly in the text. A full bibliography is available as electronic supplementary material at http://dx.doi.org/10.1098/rsbm.2014.0026 or via http://rsbm.royalsocietypublishing.org.

(18) 1980 A general approach to linear and nonlinear dispersive waves using a Lagrangian. Citation Classics 25, 25.